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Pair contact process with diffusion: A new type of nonequilibrium critical behavior?
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~Received 4 February 2000; revised manuscript received 22 September 2000; published 15 February 2001!

In the preceding article Carlonet al. investigate the critical behavior of the pair contact process with
diffusion. Using density matrix renormalization group methods, they estimate the critical exponents, raising the
possibility that the transition might belong to the same universality class as branching annihilating random
walks with even numbers of offspring. This is surprising since the model does not have an explicit parity-
conserving symmetry. In order to understand this contradiction, we estimate the critical exponents by Monte
Carlo simulations. The results suggest that the transition might belong to a different universality class that has
not been investigated before.
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Symmetries and conservation laws are known to play
important role in the theory of nonequilibrium critical ph
nomena@1#. As in equilibrium statistical mechanics, mo
phase transitions far from equilibrium are characterized
certain universal properties. The number of possible univ
sality classes, especially in 111 dimensions, is believed to
be finite. Typically each of these universality classes is as
ciated with certain symmetry properties.

One of the most prominent universality classes of n
equilibrium phase transitions is directed percolation~DP!
@2,3#. According to a conjecture by Janssen and Grassbe
any phase transition from a fluctuating phase into asingle
absorbing state in a homogeneous system with short-ra
interactions should belong to the DP universality class, p
vided that there are no special attributes such as quen
disorder, additional conservation laws, or unconventio
symmetries@4,5#. Roughly speaking, the DP class covers
models following the reaction-diffusion schemeA↔2A, A
→0” . Regarding systems with a single absorbing state the
conjecture is well established nowadays. However, vari
systems with infinitely many absorbing states have b
found to belong to the DP class as well@6–8#.

Exceptions from DP are usually observed if one of t
conditions listed in the DP conjecture is violated. This ha
pens, for instance, in models with additional symmetries.
important example is the so-called parity-conserving~PC!
universality class, which is represented most prominently
branching annihilating random walks with two offspringA
→3A, 2A→0” @9–11#. In 111 dimensions this process ca
be interpreted as aZ2-symmetric spreading process wi
branching-annihilating kinks between oppositely oriented
sorbing domains. Examples include certain kinetic Is
models @12#, interacting monomer-dimer models@13#, as
well as generalized versions of the Domany-Kinzel mo
and the contact process with two symmetric absorbing st
@14#.

A very interesting model, which is studied in the prese
work, is the (111)-dimensional pair contact process~PCP!
2A→3A, 2A→0” @15#. Depending on the rate for offsprin
production, this model displays a nonequilibrium transiti
from an active into an inactive phase. Without diffusion t
PCP has infinitely many absorbing states and the transitio
found to belong to the universality class of DP. The p
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contact process with diffusion~PCPD!, however, is charac-
terized by a different type of critical behavior. In the inactiv
phase, for example, the order parameter no longer de
exponentially; instead it is governed by an annihilating ra
dom walk with an algebraic decay. Moreover, the PCPD
only two absorbing states, namely, the empty lattice and
state with a single diffusing particle. For these reasons
transition is expected to cross over to a different universa
class. The PCPD, also called the annihilation/fission proc
was first proposed by Howard and Ta¨uber @16# as a model
interpolating between ‘‘real’’ and ‘‘imaginary’’ noise. Base
on a field-theoretic renormalization group study, they p
dicted non-DP critical behavior at the transition.

In the preceding article, Carlon, Henkel, and Schollwo¨ck
@17# investigate a lattice model of the PCPD with rando
sequential updates. In contrast to Ref.@16#, each site of the
lattice can be occupied by at most one particle, leading t
well-defined particle density in the active phase. Perform
a careful density matrix renormalization group~DMRG!
study@18,19#, Carlonet al. estimate two of four independen
critical exponents. Depending on the diffusion rated, their
estimates foru5z vary in the range 1.60~5!–1.87~3! while
b/n' is found to be close to 0.5. Since these values are c
to the PC exponentsz51.749(5) andb/n'50.499(2), they
suggest that the transition might belong to the PC univer
ity class.

The conjectured PC transition poses a puzzle. In all ca
investigated so far, the PC class requires anexactsymmetry
on the level of microscopic rules. In 111 dimensions this
symmetry may be realized either as a parity conservation
or as an explicitZ2 symmetry relating two absorbing state
In the PCPD, however, the dynamic rules are neither pa
conserving nor invariant under an obvious symmetry tra
formation. Yet how can the critical properties of the tran
tion change without introducing or breaking a symmetry?
a possible way out, there could be a hidden symmetry in
model, but we have good reasons to believe that there is
such hidden symmetry or conservation law in the PCP
This would imply that the PC class is not characterized b
‘‘hard’’ Z2 symmetry on the microscopic level; rather, it ma
be sufficient to have a ‘‘soft’’ equivalence of two differen
absorbing states in the sense that they are reached by
dynamics with the same probability.
©2001 The American Physical Society02-1
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In this paper I suggest that the transition in the PC
might belong to a different, yet unknown, universality cla
The reasoning is based on the conservative point of view
a ‘‘soft’’ equivalence between two absorbing states is
sufficient to obtain PC critical behavior. As described in R
@14#, the essence of the PC class is a competition betw
two types of absorbing domain that are related by anexact
Z2 symmetry. Close to criticality these growing domains a
separated bylocalized regions of activity. In 111 dimen-
sions, these active regions may be interpreted as kinks
tween oppositely oriented domains, which, by their very
ture, perform an unbiased parity-conserving branchi
annihilating random walk. In the PCPD, however, it
impossible to give an exact definition of ‘‘absorbing d
mains.’’ We can, of course, consider empty intervals witho
particles as absorbing domains. Yet, what is the meanin
a domain with only one diffusing particle? And even if su
a definition were meaningful, what would be the bounda
between an empty and a ‘‘single-particle’’ domain? Mor
over, in PC models there are two separate sectors of
dynamics ~namely, with even and odd particle number!,
whereas there are no such sectors in the PCPD. In fact,
when looking at typical space-time trajectories, the PC
differs significantly from a standard branching-annihilati
random walk with two offspring~see Fig. 1!. In particular,
offspring production in the PCPD occurs spontaneously
the bulk when two diffusing particles meet, whereas
branching-annihilating random walk generates offspring
along the particle trajectories. Therefore, it is reasonable
expect that the two critical phenomena are not fully equi
lent.

In order to investigate this question in more detail, it
useful to compare the DMRG estimates with numerical

FIG. 1. Typical space-time trajectories of four different critic
nonequilibrium processes starting with a fully occupied lattice. T
four panels show directed percolation~DP!, a branching-
annihilating random walk with two offspring~BAW2!, and the pair
contact process without~PCP! and with ~PCPD! diffusion.
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sults obtained by Monte Carlo simulations. It is important
note that there are two possible order parameters, nam
the particle density

r1~ t !5
1

L (
i

si~ t ! ~1!

and the density ofpairs of particles

r2~ t !5
1

L (
i

si~ t !si 11~ t !, ~2!

whereL is the system size andsi(t)50,1 denotes the state o
site i at timet. Performing high-precision simulations it turn
out that the critical behavior at the transition is characteriz
by unusually strong corrections to scaling@20#. These scaling
corrections are demonstrated in Fig. 2, where the temp
decay of the two order parameters ford50.1 is shown as a
function of time running up to almost 106 time steps. The
pronounced curvature of the data in the double-logarithm
plot demonstrates the presence of strong corrections to s
ing. Interestingly, the two curves bend in opposite directio
and tend toward the same slope. Thus, in contrast to
mean-field prediction,r1(t) andr2(t) seem to scale with the
same exponent. Discriminating between the negative cu
ture ofr1(t) and the positive curvature ofr2(t), we estimate
the critical point and the exponentd5b/n i as

pc50.1112~1!, d5b/n i50.25~2!. ~3!

While this estimate deviates only slightly from the know
PC value 0.286(2), other exponents deviate more signi
cantly. Performing dynamic simulations starting with
single pair of particles@21#, we measure the survival prob
ability P(t) that the system has not yet reached one of

e

FIG. 2. The density of particlesr1(t) and the density of pairs
r2(t) times t0.25 as a function of time measured in Monte Car
steps. Upward~downward! curvature indicates deviations from th
critical point. The dashed line represents the slope correspondin
the PC exponentd.0.285.
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two absorbing states@23#, the average number of particle
N1(t) and pairsN2(t), and the mean square spreading fro
the origin R2(t) averaged over the surviving runs. At crit
cality, these quantities should obey asymptotic power la
P(t);t2d8, N1(t);N2(t);th, and R2(t);t2/z, with cer-
tain dynamical exponentsd8 and h. Notice that in non-DP
spreading processes the two exponentsd5b/n i and d8
5b8/n i may be different. Going up to 23105 time steps we
obtain the estimates

d850.13~2!, h50.13~3!, z51.83~5!. ~4!

Although the precision of these simulations is only modera
the estimates differ significantly from the PC exponentsd8
50.286, h50 in the even sector andd850, h50.285 in
the odd sector. The exponentz, on the other hand, seems
be close to the PC value 1.75.

The most striking deviation is observed in the expon
b, which is not accessible in DMRG studies. Here the e
mates seem to decrease with increasing numerical effort
an upper bound we find
n-

,

es

s.
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b,0.67. ~5!

Even more recently, O´ dor studied a slightly different version
of the PCPD on a parallel computer, reporting the estim
b50.58(1) @22#, which is incompatible with the PC expo
nentb50.92(2).

In summary, the critical behavior of the PCPD is affect
by strong corrections to scaling, so that it is extremely di
cult to estimate the critical exponents. Although DMRG e
timates presented in@17# are very accurate, they have to b
taken with care since they are affected by scaling correcti
as well. Thus, the apparent coincidence with the expone
of the PC class may be accidental. Comparing other ex
nents, in particular the density exponentb and the cluster
exponentsd8 andh, the PC hypothesis can be ruled out.
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